Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0604519920180010099
Journal of the Society of Cosmetic Scientists of Korea
1992 Volume.18 No. 1 p.99 ~ p.132
Intermacromolecular Complex Formation between Helix Strilctilral Polypeptides through Hydrogen Bonding
Cho Byung-Ki

Kim Chang-Kyu
Abstract
Polypeptide has been used broadly as an active ingredient in cosmetics We thought it is very important to investigate the adsorption behavior of polypeptide in order to pre-estimate the effect of these polypeptides. For the study of polypeptide adsorption, we have investigated complex formation of basic homopolypeptides, poly(L-proline) Form I [PLP(I)], Form II [PLP(II)] and poly(4-hydroxy-L-proline) (PHLP) with acidic homopolypeptides, poly(L-glutamic acid) (PLGA), poly(D-glutamic acid) (PDGA) and poly(L-aspartic acid) (PLAA) through hydrogen bonding in a hydroalcoholic medium with viscometer, 1ight scatter, pH meter and circular dicroism (CD). The polypeptides used in this study have helical structure in some conditions. The result exhibited that al 1 the complexes were formed as the composition of basic/acidic homopolypeptide : L:2 irrespective of the complex systems used. A more favorable complex is formed in the PLP(II)-PLGA system than PHLP-PLGA because PLP(II) has a more flexible helical conformation, whereas PHLP has a more rigid helical conformation. The right-handed helix PLGA formed the complex favorably and quickly with the left-handed helix PLP(II), whereas the left-handed helix PDGA formed the complex favorably with the right-handed helix PLP(I). The effect of side chain of the acidic homopolypeptides on the complexation was also studied. The result showed that more favorable condition for the complexation was PLGA-PLP(II) system which has longer side chain at acidic homopolypeptide than PLAA - PLP(II). All the above facts were well supported by CD measurement for the complex systems. By the CD spectra for the complexes we could deduce the conformational change of each homopolypeptide in the complexes On the basis of the above results, we performed the adsorption test of PLP(I, II) and PHLP on the hair having a left-handed helix. The adsorption amount of each polypeptide was analyzed by HPLC. The result showed that PLP(I) was adsorbed more than PLP(II), PLP(II) was adsorbed more than PHLP on the hair. On adsorbing polypeptides having a helical structure on the hair through hydrogen bonding, it could be concluded that the helical polypeptides having the opposite directional structure to the hair are adsorbed more than those having the same directional structure with the hair and also the polypeptides having a flexible conformation are adsorbed more than those having a rigid conformation
KEYWORD
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)